Vegetation controls on carbon, water, and energy dynamics with implications for permafrost thaw

Michael M. Loranty¹, Logan T. Berner^{2,3}, Susan Natali², Heather Alexander⁴, Eric D. Taber⁵ Sergey P. Davydov⁶ Nikita S. Zimov⁶

¹Department of Geography, Colgate University ²Woods Hole Research Center ³Department of Forest Ecosystems and Society, Oregon State University ⁴Department of Biological Sciences, University of Texas, El Paso ⁵Department of Geography, Penn State University ⁶Northeast Scientific Station, Pacific Institute for Geography, Russian Academy of Sciences, Cherskiy, Russia.

AGU Fall Meeting

High Latitude Vegetation Change & Permafrost

We know that vegetation communities are changing, and that these changes influence soil temperatures

Frost & Epstein, In Press, GCB

Global Change Biology

Global Change Biology (2009), doi: 10.1111/j.1365-2486.2009.02110.x

Shrub expansion may reduce summer permafrost thaw in Siberian tundra

D. BLOK*, M. M. P. D. HEIJMANS*, G. SCHAEPMAN-STRUB*†, A. V. KONONOV‡, T. C. MAXIMOV‡ and F. BERENDSE*

> The Cooling Capacity of Mosses: Controls on Water and Energy Fluxes in a Siberian Tundra Site

D. Blok,¹* M. M. P. D. Heijmans,¹ G. Schaepman-Strub,² J. van Ruijven,¹ F. J. W. Parmentier,³ T. C. Maximov,⁴ and F. Berendse¹

Loranty et al. AGU Fall Meeting

How does vegetation influence biosphere-atmosphere mass and energy exchange in permafrost ecosystems?

An example using understory vegetation communities of Siberian boreal larch forests.

Loranty et al.

AGU Fall Meeting

Measurements

Lichen, Shrub/Moss, Shrub: 15 plots (0.25m²)

18 Jul – 4 Aug, 2015

- Active Layer Thickness
- Surface Temperature
- Soil Temperature
- $CO_2 \& H_2O$ Flux
- NDVI
- Electrical Resistivity Profiles

AGU Fall Meeting

AGU Fall Meeting

Physical Conditions

Active Layer Thickness

te

AGU Fall Meeting

Physical

Evapotranspiration

Lichen Moss Shrub

Lichen Moss Shrub Shrub

Lichen Moss Shrub

AGU Fall Meeting

Loranty et al.

Dec. 10th 2013

Lichen

Moss Shrub

Physical Conditions

Active Layer Thickness

Shrub Lichen Moss

Shrub

te

0.0 0.2

Evapotranspiration

Loranty et al.

AGU Fall Meeting

Carbon Dynamics

GPP drives net carbon flux

Loranty et al.

AGU Fall Meeting

Subsurface Conditions

Consistent & Persistent Temperature and Moisture Differences

te

Loranty et al.

AGU Fall Meeting

This is a small data set from one site, but what can we learn?

Loranty et al.

AGU Fall Meeting

Dec. 10th 2013

Aug Oct Dec Feb Apr Jun Aug

Ecosystem Implications

Can we use satellites to detect this specific type of variability?

Fire influences on stand density?

"Fill-Spill" Hydrology Lateral C Fluxes?

Loranty et al. AGU Fall Meeting

Implications at Larger Scales?

Pearson et al, 2013, NCC

Are similar phenomenon occurring with other types of vegetation change?

Loranty et al, In Press, GCB

Loranty et al. AGU Fall Meeting

Acknowledgements

Mike Coe & Max Holmes, WHRC The Polaris Project Northeast Science Station Colgate University Research Council

AGU Fall Meeting

