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Figure 1. Trends in summer (July and August) NDVI from 2001 to
2008 and derived from the (a) GIMMS and (b) MOD13A3 (Huete
et al 2002) data sets measured as regressions slopes resulting from
ordinary least squares regression of NDVI versus time and with
uncertainty (gray shading) measured using the standard error relative
to the regression slope. (c) The comparison of trends in the two data
sets with uncertainty (gray shading) measured as the mean of the
relative standard errors.

is an area in northernmost Canada where vegetation cover is
very sparse, and at a latitude where low illumination angles
hamper the retrieval of consistent reflectance data from remote
sensing (Shuai et al 2008). This area was excluded from further
analysis (figure 2).

As the GIMMS record grows in length, larger areas
across North America show statistically significant Prs trends
(figures 3(a) and (c)). Strikingly, statistical support is growing
for the earlier reported contrast between trends in Prs in the
tundra and the boreal biome of North America (Goetz et al
2005), with ‘greening’ and ‘browning’ trends increasingly
dominating the tundra and boreal biomes respectively. In

Figure 2. Trends in remotely sensed gross productivity (Prs)
between 1982 and 2008. Gray shading indicates the trend was
non-deterministic based on a Vogelsang test (α = 0.05). Areas in
white were excluded from the analysis.

contrast, the proportion of the Siberian tundra and boreal
landscape that shows a deterministic trend in Prs, has remained
relatively constant (figures 3(b) and (d)). Nonetheless, an
increasingly negative forest Prs response is discernable in
Siberia (figure 3(d)), although it is much less widespread than
in North America. Indeed, in the Eurasian boreal biome Prs
increases are still about twice as common as Prs decreases.
Lower tree cover in parts of the Siberian boreal zone might
be partly responsible for this; the FAO (2001) vegetation
class ‘boreal tundra woodland’ had just 15 [SD = 14] per
cent tree cover in Eurasia versus 29 [SD = 16] per cent
in North America (tree cover differences between the two
continents for the polar zone, boreal coniferous forest, and
boreal mountain system were 6, −4, and 4%, respectively). As
such, this zone of sparse tree cover, which occurs south of the
tundra in Siberia and is here included in the boreal biome, is
actually a transition zone from tundra to more densely forested
areas. However, the boreal tundra woodland class represent
only 14% of boreal Eurasia and productivity increases are
more often observed in areas of high tree cover in Eurasia
than in North America (figure 4). Extensive increases in
Prs are observed in central and eastern Siberia suggesting
environmentally driven productivity shifts. In contrast, some
of the spatially scattered increases observed in western Siberia
might be due to limitations in the land cover map used to mask
agricultural landscapes, combined with forest recovery after
agricultural land abandonment around the end of the Soviet era
(de Beurs et al 2009).

4. Boreal forests

In general, we observe a similar pattern of Prs responses
with regard to tree cover in North America and Siberia.
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ABSTRACT

Arctic tundra vegetation composition is expected to
undergo rapid changes during the coming decades
because of changes in climate. Higher air temper-
atures generally favor growth of deciduous shrubs,
often at the cost of moss growth. Mosses are con-
sidered to be very important to critical tundra
ecosystem processes involved in water and energy
exchange, but very little empirical data are avail-
able. Here, we studied the effect of experimental
moss removal on both understory evapotranspira-
tion and ground heat flux in plots with either a
thin or a dense low shrub canopy in a tundra site
with continuous permafrost in Northeast Siberia.
Understory evapotranspiration increased with
removal of the green moss layer, suggesting
that most of the understory evapotranspiration

originated from the organic soil layer underlying
the green moss layer. Ground heat flux partitioning
also increased with green moss removal indicating
the strong insulating effect of moss. No significant
effect of shrub canopy density on understory
evapotranspiration was measured, but ground heat
flux partitioning was reduced by a denser shrub
canopy. In summary, our results show that mosses
may exert strong controls on understory water and
heat fluxes. Changes in moss or shrub cover may
have important consequences for summer perma-
frost thaw and concomitant soil carbon release in
Arctic tundra ecosystems.

Key words: moss; evaporation; ground heat flux;
shrub; permafrost; tundra; Arctic; climate change.

INTRODUCTION

Arctic tundra vegetation composition is expected to
undergo rapid changes during the coming decades

(ACIA 2004) because of changes in climate (IPCC
2007). Higher air temperatures generally favor
growth of deciduous shrubs (Chapin and others
1995; Wahren and others 2005; Forbes and others
2010; Blok and others 2011), potentially at the cost
of the understory moss and lichen vegetation. Moss
growth may be reduced directly by higher air
temperature because of the relative low tempera-
ture optima of mosses for photosynthesis (Hobbie
and others 1999) or indirectly by increased shading
by the shrub canopy and associated leaf litter
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Shrub expansion may reduce summer permafrost thaw in
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Abstract

Climate change is expected to cause extensive vegetation changes in the Arctic: deciduous
shrubs are already expanding, in response to climate warming. The results from transect
studies suggest that increasing shrub cover will impact significantly on the surface energy
balance. However, little is known about the direct effects of shrub cover on permafrost thaw
during summer. We experimentally quantified the influence of Betula nana cover on perma-
frost thaw in a moist tundra site in northeast Siberia with continuous permafrost. We
measured the thaw depth of the soil, also called the active layer thickness (ALT), ground
heat flux and net radiation in 10 m diameter plots with natural B. nana cover (control plots)
and in plots in which B. nana was removed (removal plots). Removal of B. nana increased ALT
by 9% on average late in the growing season, compared with control plots. Differences in ALT
correlated well with differences in ground heat flux between the control plots and B. nana
removal plots. In the undisturbed control plots, we found an inverse correlation between B.
nana cover and late growing season ALT. These results suggest that the expected expansion of
deciduous shrubs in the Arctic region, triggered by climate warming, may reduce summer
permafrost thaw. Increased shrub growth may thus partially offset further permafrost
degradation by future temperature increases. Permafrost models need to include a dynamic
vegetation component to accurately predict future permafrost thaw.

Keywords: active layer thickness, Betula nana, climate warming, ground heat flux, permafrost degrada-

tion, tundra vegetation
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Introduction

Climate change has caused rapid environmental
changes at northern high latitudes (Serreze et al., 2000;
Hinzman et al., 2005; McGuire et al., 2006). Atmospheric
warming is expected to continue in the future, espe-
cially in the Arctic region (ACIA, 2004). Climate models
predict a mean annual temperature rise of 5 1C in the
Arctic by the end of this century (IPCC, 2007). A rise in
temperature may have important consequences for the
stability of permafrost soils, which are thought to store
twice as much carbon as is currently present in the
atmosphere (Schuur et al., 2008). Siberian permafrost
soils in particular contain a significant reservoir of
easily decomposable organic carbon (Zimov et al.,

2006). Given that the decomposition of organic matter
is largely controlled by permafrost conditions (Goulden
et al., 1998), there are fears that if the permafrost thaws,
much of the carbon stored will be released to the
atmosphere (Mack et al., 2004; Dutta et al., 2006). Thaw-
ing permafrost might thus trigger important feedback
effects between further climate change and soil carbon
release (Schuur et al., 2008).

Permafrost warming has been observed in some
Arctic regions in recent decades (Osterkamp & Roma-
novsky, 1999) and it is expected that the thickness
(Anisimov et al., 1997) and extent (Lawrence & Slater,
2005) of permafrost will decrease drastically because of
climate warming. However, vegetation cover and soil
properties play an important role in protecting perma-
frost from degradation because of atmospheric warm-
ing (Walker et al., 2003; Yi et al., 2007). A north–south
transect study in Alaskan tundra showed little
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We	  know	  that	  vegeta&on	  
communi&es	  are	  changing,	  
and	  that	  these	  changes	  

influence	  soil	  temperatures	  	  

Frost	  &	  Epstein,	  In	  Press,	  GCB	  
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How	  does	  vegeta&on	  influence	  biosphere-‐atmosphere	  
mass	  and	  energy	  exchange	  in	  permafrost	  ecosystems?	  

An	  example	  using	  
understory	  vegeta&on	  
communi&es	  of	  Siberian	  
boreal	  larch	  forests.	  	  

Northeast	  	  
Science	  Sta&on	  
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Measurements	  

Lichen,	  Shrub/Moss,	  Shrub:	  	  
	  15	  plots	  (0.25m2)	  

	  	  
18	  Jul	  –	  4	  Aug,	  2015	  

•  Ac&ve	  Layer	  Thickness	  
•  Surface	  Temperature	  
•  Soil	  Temperature	  
•  CO2	  &	  H2O	  Flux	  
•  NDVI	  
•  Electrical	  Resis&vity	  Profiles	  
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This	  is	  a	  small	  data	  set	  
from	  one	  site,	  but	  what	  

can	  we	  learn?	  
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Ecosystem	  Implica&ons	  

“Fill-‐Spill”	  Hydrology	  
Lateral	  C	  Fluxes?	  

Fire	  influences	  on	  
stand	  density?	  

Can	  we	  use	  satellites	  to	  
detect	  this	  specific	  type	  
of	  variability?	  
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Changes	  in	  
boreal	  forest	  
density	  and	  
species	  
composi&on?	  

Are	  similar	  phenomenon	  
occurring	  with	  other	  types	  
of	  vegeta=on	  change?	  
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