Impacts of climate change on plant productivity in the Cajander larch woodlands of northeastern Eurasia

Logan Berner^{1,2} Pieter Beck², Andy Bunn³, and Scott Goetz²

> ¹Oregon State University ²Woods Hole Research Center ³Western Washington University

Overview

- Siberia's changing forests
- II. Ecotone in Kolyma Basin
- II. Plant growth and climate?
- v. Satellite perspective
- v. Larch tree ring perspective

Siberian forests and climatic change

- □ Siberian forests span ~6 x 10⁶ km^{2 1}
- Pronounced observed and projected warming²
- Climate-driven changes in forest productivity ³, extent ⁴, and composition ⁵ in some areas
- □ Drastic vegetation shifts projected for 21st century ^{6,7}
 - Large social, ecological and biophysical implications
- Changes expected initially along forest margins

¹Shvidenko and Nilsson 1994, ²IPCC AR5 2013, ³Beck et al. 2011, ⁴Devi et al. 2008, ⁵Kharuk et al. 2007, ⁶Tchebakova et al. 2010, ⁷Pearson et al. 2013

The Kolyma Basin

- □ Covers 657,000 km²
- Largest watershed with continuous permafrost¹
- Large carbon stores in permafrost²
- Grassland steppe during
 Pliestocene²
- Currently Cajander larch (Larix cajanderi) woodlands and tundra shrublands³

Climate in the Kolyma Basin

CRU and GPCC data 1938-2009 CMI = P - PETVery cold and dry \square MAT = -13.0 \pm 0.7°C □ MAP = 282 ± 37 mm **CMI** = -84 ± 47 mm Expect plants are

sensitive to climate...

Research questions

To what extent was interannual variability in plant growth related to climate?

Did recent warming drive systematically changes in plant productivity ?

Remote sensing analysis

Tree-ring analysis

Photo credit: Natural Resources Canada

Photo credit: ESA

Remote sensing analysis

Regional productivity trends and climate correlations (1982-2009)

Plant dynamics along gradient in summer temperature

Tree-ring analysis

Photo credit: Natural Resources Canada

Larch climate response (1938-2007)

Larch growth trends

NDVI-BAI correlation: r = 0.44, P<0.05

Conclusions

- I. Climate warmed in northeastern Siberia since the 1940s
- II. Low temperatures and moisture limited annual plant productivity
- III. Warming enhanced growth in some areas

Feedback

Warming $\rightarrow \Delta$ albedo, ET, C storage, permafrost thaw, fire regimes –

Thank you

For more information:

Berner, L. T., P. S. A. Beck, A. G. Bunn, and S. J. Goetz. 2013. Plant response to climate change along the forest-tundra ecotone in northeastern Siberia. Global Change Biology **19**:3449-3462

Funded by: NSF-Seasonality (No. 0902056, SG & PB) NSF-IPY (No. 0732954, SG)

Acknowledgements

POLARIS project for assistance in Russia (NSF No. 1044610 and 0732944) Nikita and Sergey Zimov GIMMS at NASA for providing NDVI data

Туре	Name	Period	Resolution	Source
Satellite	Normalized Difference Vegetation Index (NDVI)	1982-2010	biweekly	AVHRR GIMMS 3G
Tree-ring	Larch ring-width 9 sites, 104 trees	1750-2007	annual	Berner et al. 2011
Climate	Temperature (T)	1938-2009	monthly	CRU 3.10
	Potential Evapotranspiration (PET)	1938-2009	monthly	CRU 3.10
	Precipitation (P)	1938-2010	monthly	GPCC 6

11-yr moving RWI-climate correlations

NDVI-tree ring correlations

Climate stations

Climate in the Kolyma Basin

Data: CRU and GPCC, 1938-2009

Conclusions

- I. Climate warmed in northeastern Siberia since the 1940s
- II. Temperature and moisture limit annual plant productivity
 - Spatially, temperature constraints decreased with increased average temperature
- III. Warming enhanced growth in some areas
 - Primarily cold, shrub-dominated areas
 - Tree growth declined despite increasing temperatures
- IV. Future changes in plant dynamics in the forest-tundra ecotone likely dependent on relative shifts in temperature and water